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In the fractalization route for the formation of strange nonchaotic attractors(SNA’s) in quasiperiodically
driven nonlinear dynamical systems, a smooth torus gradually becomes a fractal as the forcing amplitude is
increased, while the Lyapunov exponent remains nonpositive. Using techniques introduced by Kimet al. to
identify unstable sets in SNA’s, we study torus fractalization in a sequence of approximations wherein the
quasiperiodic drive is replaced by periodic forcing of increasing period. This allows us to identify an unstable
set embedded in the attractor. In the periodically forced system, we show that there is a cascade of attractor
merging crises, and argue that the quasiperiodic analogue of such crises causes fractalization of tori to create
SNA’s.
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I. INTRODUCTION

Chaotic attractors occurring in low-dimensional dissipa-
tive systems usually have an intricate geometric structure in
phase space: the capacity dimension of such an attractor of-
ten assumes noninteger values. These are termed strange[1].
In 1984, Grebogiet al. [2] constructed systems where the
dynamics was on fractal attractors but was alsononchaotic,
namely, the largest Lyapunov exponent was negative(or
zero, at most). The infinitesimal fine scale structure similar to
strange sets combined with the lack of sensitivity to initial
condition are characteristic of strange nonchaotic attractors
(SNA’s) [3].

The term fractalization was first used to describe the phe-
nomenology of the dynamics in a study of the quasiperiodi-
cally driven quadratic map by Kaneko[4] who observed that
with increasing forcing, the torus attractors of the(two-
dimensional) mapping became increasingly wrinkled, even-
tually turning fractal at a critical point. There also was an
interruption of the period-doubling cascade with an acceler-
ated transition to chaos. In a subsequent and more detailed
study, Nishikawa and Kaneko[5] showed that this process
leads to strange nonchaotic dynamics and termed this the
fractalization route to SNA.

Although by now it is known that SNAs are typical in
quasiperiodically forced systems—in that they can occur in a
set of nonzero Lebesgue measure in the parameter space,
intermediate between ordered and chaotic motion—all bifur-
cations and mechanisms leading to such dynamics have not
been completely characterized. Quasiperiodic extensions of
the bifurcations that commonly occur in nonlinear dynamical
systems underlie most of the known scenarios for the forma-
tion of SNA’s [3]. It should be noted that while it is possible
to find fractal nonchaotic attractors in systems which are not
quasiperiodically forced, these are neither typical nor robust
to perturbations. Several routes leading to the formation of
SNA’s are known[6–11], although there are few rigorous
results available[12–15] which establish both the fractal and
the nonchaotic properties for most such cases.

An essential feature of SNA’s is the existence of an un-
stable set embedded within the attractor. This follows from

the results of Stark[16] and Sturman and Stark[17], who
proved that a strange compact invariant set for quasiperiodi-
cally forced systems must support at least one invariant mea-
sure with non-negative maximal Lyapunov exponent. Thus
the attractor contains locally unstable regions even though
globally the dynamics is nonchaotic. Such locally unstable
regions can be characterized by studying the local Lyapunov
exponents[18] which can be positive on an SNA depending
on initial conditions. Distributions of local Lyapunov expo-
nents have proved to be useful in characterizing SNA’s[19].

The fractalization route to SNA is one which is not asso-
ciated with a specific bifurcation, unlike the other known
scenarios for the formation of such attractors[3]. Though it
is clear that there must be an unstable component to the
attractor, it has not proved to be straightforward to identify
this set.

In this paper we examine the process of fractalization and
demonstrate that a cascade of attractor merging crises pre-
cedes the creation of the fractal attractor. We follow the
method used by Kim, Lim, and Ott[10] to find unstable sets
for the fractalization process using a sequence of rational
approximations(RA’s) [20]. These unstable sets are created
through a cascade of period-doubling bifurcations, and colli-
sion of chaotic bands with them causes a cascade of interior
merging crises whereby the fractalization process takes
place.

We study both quasiperiodically driven mappings such as
the forced logistic map(in Sec. II), as well as continuous
systems such as the forced Duffing oscillator(in Sec. III). In
either case, it is necessary to analyze a sequence of periodi-
cally forced systems that approximate the quasiperiodic sys-
tem. These two models have been extensively studied with
regard to the creation of SNA via fractalization[5,21]; we
thus believe the mechanism which we elucidate for the cre-
ation of fractalized SNA’s to be quite generally applicable.
The paper concludes with a discussion and summary in
Sec. IV.

II. THE FORCED LOGISTIC MAP

Commonly studied examples of forced dynamical systems
have been skew product maps
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xn+1 = fsxn,und, s1d

un+1 = v + un mod 1, s2d

where the forcing variableu evolves by rigid rotation. When
v is irrational, the forcing is quasiperiodic, and for a variety
of such systems, SNA’s have been observed for a range of
parameter values in the vicinity of transition to chaos
[5,7,10,21]. Unlike chaotic attractors, SNA’s do not show
sensitivity to initial conditions, but there is sensitivity to the
phasevariable[18], namely,u, and to the forcing amplitude
(or system parameters) [5]. The origin of this phase sensitiv-
ity arises from the fact that even though the asymptotic
Lyapunov exponent is nonpositive, the local Lyapunov expo-
nents can remain positive for long time intervals for typical
orbits on SNA’s[18].

Following Nishikawa and Kaneko[5], we describe the
phenomenology of fractalization in the logistic map with ad-
ditive quasiperiodic forcing, namely, the case of

xn+1 = fsxn,und = axns1 − xnd + e sins2pund s3d

with v=sÎ5−1d /2. In Eqs. (2) and (3) at zero forcing,
namely,e=0, the logistic map has a single attracting fixed
point for 1øaø3. Thus, for example, ata=3, the attractor
for the above system is a one torus which is a straight line in
the phase spacesx,ud. With increasinge this one torus de-
velops curvature(while remaining a smooth closed curve),
and eventually becomes a SNA ate,0.1553[5]. At higher
values ofe the stability along thex direction is lost and the
fractal nonchaotic attractor is replaced by a chaotic attractor,
abovee,0.1573. Nishikawa and Kaneko[5] verify the ex-
istence of SNA for 0.1553øeø0.1573 by showing that the
attractor has noninteger dimension and that the dynamics has
phase and parameter sensitivity.

Extending this calculation, we obtain the phase diagram
for the forced logistic map, shown in Fig. 1(a). We have
found it useful to characterize the dynamics through both the
Lyapunov exponentlx, which is given by

lx = lim
N→`

1

No
i=1

N

lnU ] fsxi,uid
] xi

U s4d

and the phase sensitivity exponent which can be obtained
from phase sensitivity functionGN [18]

GNsa,ed = min
x0,u0

S max
0ønøN

U ] xn

] u
UD . s5d

On a SNA, the functionGN grows with the length of the orbit
N, as a power, i.e.,GN,Ng, whereg is the phase sensitivity
exponent[18]. (Although we have not used it here, the pa-
rameter sensitivity exponent[5] has a similar behavior.)
Regular motion[the white region in Fig. 1(a)] is character-
ized by a negative Lyapunov exponent and zero phase sen-
sitivity exponent. SNA(the colored regions) dynamics has
gÞ0 and negativelx, while chaotic motion(the black re-
gion) hasgÞ0,lx.0.

SNA’s in the quasiperiodically forced logistic map appear
through various routes[22]. Indicated in Fig. 1(a) are the
regions in parameter space where the fractalization mecha-

nism operatessFd, the narrow region corresponding to the
intermittency scenariosId, and the region where SNA’s are
created through torus collision(TC). As has been extensively
discussed[3,22], all these routes are dynamically distinct.

We focus on a small portion of this parameter space
where all SNA’s that occur are created through fractalization.
Shown in Fig. 1(b) is an expansion of the boxed region in
Fig. 1(a); this includes the parameter range studied by Nish-
ikawa and Kaneko[5]. Note that the boundaries of the
regular-SNA-chaotic regions in the phase plane are also
likely to be fractal, although this has not been conclusively
established at the present level of computational effort.

A. Fractalization path

The mechanism of fractalization can be understood more
clearly if we approach the SNA region along a line which is
normal to the boundary, namely, by varying both parameters

FIG. 1. (Color online) (a) Phase diagram of the forced logistic
map computed for a set of 2503250 points in thea-e plane.
Regular, chaotic, SNA, and escape regions are shown by white,
black, colored(red, yellow, and green) , and light gray, respectively.
SNA’s are formed through the fractalization(labeled by F),
intermittency sId, and torus collision(TC) routes. (b) A blowup
of the boxed region of the phase diagram shown in(a). The
path chosen for study approaches the SNA region
approximately normally and is indicated by the dashed line.
The coordinates of the various indicated points arep1=s2.956,
0.1528d, p2=s2.97008,0.1536d, p3=s2.972544,0.15374d, p4

=s2.978704,0.15409d, p5=s2.991904,0.15484d, p6=s2.995952,
0.155507d, p7=s3,0.1553d, p8=s3.00264,0.15545d, p9=s3.0088,
0.1558d, andp10=s3.0125,0.15601d.
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a and e. The path we follow here is indicated in Fig. 1(b)
joining pointsp1¯p10 and the variation of Lyapunov expo-
nent lx along this line is shown in Fig. 2.(The other
Lyapunov exponent for the system is zero since theu dynam-
ics is a rotation.) The attractor atp4 is a smooth torus, and at
p6, near the SNA region, it becomes wrinkled as shown in
Fig. 3. The SNA obtained through fractalization route is
shown in Fig. 3(c) corresponding top8 where the transition
to the fractalized SNA is complete. Atp10, lx is positive; the
system is chaotic.

In order to locate the unstable set embedded in the attrac-
tor we use a standard method to approximate the irrational
drive frequencyv by an increasingly accurate series of ra-
tional numbers[8,10,20,23]. These are the convergents in the
continued fraction representation ofv, and for the inverse
golden mean ratio that we use here, namelyv=sÎ5−1d /2,
they are ratios of successive Fibonacci numbers. Thus we
approximatev by vk=Fk−1/Fk, whereFk+1=Fk+Fk−1 with
F0=0 andF1=1.

B. Rational approximations

When the irrationalv in Eq. (2) is replaced by its rational
approximationvk, one necessarily has a periodically forced

system which approaches the original quasiperiodic case in
the limit k→`. The driven system withv=vk=Fk−1/Fk is
termed the rational approximation of orderk.

Depending on the initial phaseu0, theperiodically forced
logistic map has either periodic or chaotic attractors. Due to
the periodicity it is sufficient to restrictu0 to the interval
f0,1/Fkg; the remainder of the attractor can be obtained by
iterating these valuesFk−1 times. Thekth order approxima-
tion to the attractor of the quasiperiodically forced system is
thus the union of all attractors for 0øu0ø1. The attractor
for the rational approximation of level 6 at the pointp5 is
shown in Fig. 4(a). Also shown, superimposed in gray, is the
unstable set, which we obtained using the methods outlined
in Kim, Lim, and Ott[10]. The attractor in Fig. 4(a) is com-
posed of 7s;F6−1d evolved iterates of the attractor within
the window(shown by boxed region in the figure). This ba-
sic window is rescaled and displayed in Fig. 4(b). Since the
qualitative features are unchanged in each of the copies, we
restrict attention to the attractor inf0,1/Fkg henceforth.

For fixeda ande, the initial phaseu (henceforth we drop
the subscript for simplicity) can be regarded as a bifurcation
parameter[10], and hence the attractor of the dynamics can
be interpreted as a bifurcation diagram. Note that as a func-
tion of u, there is a period doubling bifurcation where a
stable orbit bifurcates into a stable period-two orbit, and one
unstable orbit. At a subsequent value ofu, there is a reverse
period-doubling bifurcation where the period-two orbits

FIG. 2. The nontrivial Lyapunov exponent calculated along the
dotted line on the parameter plane shown in Fig. 1(b) from 106

points, discarding the initial 104 as transients. The abscissa is the
distance of various points fromp1, denoted bydp1

. The regions of
torus, SNA and chaotic attractor(CA) are indicated on the horizon-
tal line at the bottom of the figure.

FIG. 3. The attractor of the dynamics along the fractalization
path at(a) p4, (b) p6, and(c) p8.

FRACTALIZATION ROUTE TO STRANGE NONCHAOTIC… PHYSICAL REVIEW E 70, 046203(2004)

046203-3



merge to form a period-one orbit. The structures apparent in
Fig. 4(b) are composed of a series of period-doubling bifur-
cations and reverse period-doubling bifurcations within the
so-called “bubble” bifurcation plots. Essentially as a function
of u, one can have a period-doubling bifurcation, which(be-
cause of continuity at the window boundary) must be re-
flected in a reverse bifurcation. These period-doubling bifur-
cations accumulate in a transition to a chaotic attractor, and
as is common, will result in a sequence of band mergings.
This appears eventually as a chaotic band delimited on both
sides by a period-doubling cascade, and the periodic part of
the stable set contains components of period 2mFk, m
=0,1,2, . . . .

Whenv is approximated by itskth order rational approxi-
mation, one can define a Lyapunov exponent for each initial
u using Eq.(4), however, withvk in the dynamical equation
(2). Depending on whether the initialu corresponds to the
chaotic, quasiperiodic or periodic ranges of the attractor,

lx
skdsud will be greater than, equal to, or less than zero. Now

following Kim, Kim, Hunt, and Ott [23], the order k
Lyapunov exponentlx

skd for the orbit can be defined as[23]

lx
skd =E

0

1

lx
skdsuddu s6d

by integrating over all initialu. In the limit of k→`,
vk→v, and clearlylx

skd→lx [see Eq.(4)].
Shown in Fig. 4(c) is lx

s6dsud [see Fig. 4(b)] for both the
stable and the unstable sets. There is a smooth variation of
the orderk Lyapunov exponent for the unstable periodic or-
bits for which the Lyapunov exponent is always positive, and
a comparatively nonsmooth variation of the same foru val-
ues when the attractor is chaotic.

The basic mechanism of the fractalization process can be
understood from the transitions occurring along the path
from p1 to p4 in the parameter plane of Fig. 1(b) at succes-
sive orders of rational approximations. Introducing the nota-
tion Bj

k to denote the bifurcation to period 2j orbits in the
rational approximation of orderk, we show in Fig. 5(a) the
bifurcation B1

6, when there is a period-doubling bifurcation
giving an unstable orbit of periodF6 and a stable orbit of

FIG. 4. (Color online) For the rational approximation of order 6,
namely,vk=5/8, (a) the stable set(marked by dots) and the un-
stable set(the light pink line) calculated at the pointp5 on the
parameter plane[see Fig. 1(b)]. (b) Enlargement of the dashed por-
tion of (a), showing the stable and unstable sets(light pink line). (c)
The Lyapunov exponent corresponding to the stable and the un-
stable set(in black and light pink, respectively). Note the change of
scale inu in (b) and (c).

FIG. 5. (Color online) For the rational approximation of order 6,
namely,vk=5/8, theattractor along with the ustable set(in light
pink) at (a) p1 and (b) p2.
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period 2F6. This is followed by a reverse bifurcationR1
6

whereby the orbit of periodF6 becomes stable again. With
increasing parameters, at pointp2 along the path, the bifur-
cationsB1

6, B2
6, andB3

6 are shown in Fig. 5(b) giving unstable
orbits, in different ranges ofu, of periodsF6, 2F6, and 22F6.
With changing parameter values a cascade of such bifurca-
tions follow, giving unstable and stable orbits of all periods
2nFk, n=1,2,3, . . ., insuccessively smaller windows inu,
and eventually giving rise to a chaotic component as is
clearly visible in Fig. 6.

At p3 [see Fig. 6(a)] the dynamics is chaotic for a range of
u, flanked on both sides by a period-doubling cascade. There
are two such chaotic bands with an unstable orbit of period
F6 between. As the pointp4 is approached, these two chaotic
attractors collide simultaneously with the unstable periodF6
orbit. An attractor merging crises takes place as shown in
Fig. 6(b). We term thisM1

6. Each chaotic attractor which
merges through interior or merging crises was born through a
similar process, as can be seen in Fig. 6(a) where the four
chaotic windows just touch the unstable period 2F6 orbits;
this is the mergingM2

6. In the inset of Fig. 6(a) the upper
chaotic band is magnified, showing the earlier band-merging
crises where chaotic attractors have already collided with
period 2nF6 unstable orbits. Three such bubbles at various
stages of development are visible in Fig. 4(b). With further
increase of the parameter values the number of such cascades
increases.

C. Asymptotics

The sequences of bifurcations and reverse bifurcations de-
pend on both the parameter values(namely,a ande) as well
as the order of the rational approximation. Thus, for lowk,
far into the regular region, one typically observes the trun-
cated sequences

B1
k,B2

k, . . . ,Bm
k ,Rm−1

k , . . . ,R2
k,R1

k s7d

with finite m. When the transition is made to chaotic dynam-
ics within the rational approximation, then the sequence of

B1
k,B2

k, . . . ,B`
k ; M`

k , . . . ,Mj
k, . . . ,R2

k,R1
k s8d

for j ù1 can obtain. With increasingk, if the parameters are
in the regular region, then the bifurcation sequence of Eq.(7)
eventually obtains, whereas if the parameters correspond to
the SNA or chaotic regime, then the sequence(8) is realized.

In Fig. 7 at the pointp6 on the parameter plane(which lies
just outside the SNA region) the rational approximation to

FIG. 6. (Color online) As in Fig. 5, at(a) p3 and (b) p4.
FIG. 7. (Color online) The rational approximations to the qua-

siperiodic attractors at various orders, at the pointp6. The stable and
unstable sets are denoted by black and light pink dots, respectively.
(a) Order 7, v7=8/13. (b) Order 11,v11=55/89. (c) Order 13,
v13=144/233. Note thatp6 lies outside the SNA region, and the
chaotic component vanishes at order 13, leaving, as a remnant of
the bifurcations, the small bubble in(c).
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the attractor at various orders is shown. The chaotic compo-
nent is seen to keep decreasing with the increase of order,
and[see Fig. 7(c)] vanishes forkù13. Since the full attractor
at k=13 is composed of 377 evolved copies of this attractor,
we infer that the torus is indeed “wrinkled,” but in thek
→` limit does not become a fractal. Note that for the ratio-
nal approximation of order 13 the sequence of bifurcations
B1

13R1
13 is visible in a small range ofu, corresponding to the

scenario(7).
This scenario can be quantitatively characterized by mea-

suring the chaotic component of the dynamics—the width of
the intervals inu that give a positive Lyapunov exponent[see
Eq. (6)]—as a function of the rational approximation orderk.
This will eventually go to zero for regular(torus) dynamics,
whereas for SNA or chaotic motion, this quantity will as-
ymptote to a constant. This quantity, at different points along
the fractalization path, is shown in Fig. 8. Atp4, which is
outside the SNA region, the fraction of chaotic component
vanishes for the order 11 rational approximation, while atp6
which is just at the threshold of the SNA region, a measur-
able fraction of initialu lead to chaotic dynamics even for
the order 15 rational approximation. In the SNA region, at
point p8 and beyond, the measure of the surviving chaotic
component remains nonzero for all orders of the rational ap-
proximation. In our numerical simulations we have found
that the support of the chaotic component appears to have a
nonmonotonic variation with respect to the increase of order
of rational approximation, but this is likely to arise from the
fact that the boundaries of various dynamical regions are
themselves probably fractal.

Whether the attractor is nonchaotic or chaotic depends on
the surviving fraction of the chaotic component. When as-
ymptotically there is no surviving chaotic component, the
attractor is clearly nonchaotic and will be a wrinkled torus.
At the transition to SNA, the fraction of chaotic motion that
survives at each order of the rational approximation is
enough to contribute some instability to the motion and con-
fer fractality to the attractor without making the Lyapunov
exponent positive. At the transition point from SNA to chaos,

the total positive Lyapunov exponent corresponding to the
chaotic component balances the total negative Lyapunov ex-
ponent coming from the regular component. When, as at the
point markedp10 in Fig. 1(b), the chaotic component is
larger than the regular, the global Lyapunov exponent be-
comes positive and results in a fractal chaotic attractor. As
can be seen in Fig. 8, forp10 the fraction of the chaotic
component approaches unity with increasing order of the ra-
tional approximation.

III. THE FORCED DUFFING OSCILLATOR

The scenario that has been described in the previous sec-
tion appears to apply quite generally. Here we study the frac-
talization route to SNA in a continuous system, the quasi-
periodically forced Duffing oscillator. A variant of this sys-
tem can be realized in experiment as the magnetoelastic rib-
bon; indeed this was one of the first systems where SNA’s
were observed[24]. Such continuous-time-dynamical sys-
tems can also be reduced to mappings via the Poincaré sec-
tion technique.

The equation of motion for the quasiperiodically forced
Duffing oscillator[21,24,25] is

ẍ + hẋ− f1 + AsR cos t + cosvtdgx + x3 = 0, s9d

where the frequencyv is taken to be an irrational number,h
is the damping constant, andA andR determine the coupling
and amplitude of the quasiperiodic forcing term. This can be
rewritten as a set of autonomous coupled first-order differen-
tial equations

ẋ = y, s10d

ẏ = f1 + AsR cosf + cosudgx − x3 − hy, s11d

ḟ = 1, s12d

u̇ = v s13d

in a four-dimensional phase space. Earlier studies of the
forced Duffing oscillator[21,25] have established that with
quasiperiodic forcing SNA’s are created through several dif-
ferent mechanisms, including fractalization. A detailed study
of these routes has been presented earlier in Ref.[21] where
phase diagrams describing the different dynamical behavior
as a function of the different parameters has also been given.

We restrict attention to the portion of the parameter region
where the fractalization transition to SNA is known to occur
[21], namely, for v=sÎ5+1d /2, h=0.0552, andA=0.3.
Equation (9) is numerically integrated with a fourth-order
Runge-Kutta algorithm with step size 0.01 in natural units.
The Lyapunov exponents are computed as a function of the
parameterR.

Shown in Fig. 9 is the largest nontrivial Lyapunov expo-
nent as a function ofR. At the pointsp1 andp2 the dynamics
is regular; the attractor atp2 is shown in Fig. 10(a) projected
onto thesx,ud plane. Nearp3, there is a transition from regu-
lar motion to SNA via the fractalization route.p4 lies in the

FIG. 8. The support of the chaotic part of the attractor with the
increasing order of rational approximation, calculated for 5000 ini-
tial u. When this asymptotically goes to zero, a nonstrange noncha-
otic attractor results. For strange attractors, there is always a re-
sidual chaotic set at any order of rational approximation. At the
point p10, the attractor of the quasiperiodically forced system is
chaotic.
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SNA region: the corresponding attractor is shown in Fig.
10(b). At p5 the largest Lyapunov exponent is positive and
the dynamics is chaotic.

The rational approximation technique to investigate the
transition from regular motion to SNA involves replacement
of the irrational driving frequencyv by vk=Fk/Fk−1 at order
k, where theFk’s are the Fibonacci numbers. As in the case
of the mapping studied in the previous section, the initial
value of the phase variableu becomes a bifurcation param-
eter, and depending on the initial phase the attractor of the
periodically driven Duffing oscillator can be regular or cha-
otic.

The analysis here parallels that presented in Sec. II since
the mechanism of fractalization in the forced Duffing system
is very similar to that in the forced logistic map. At a given
level of rational approximation, a cascade of period dou-
blings are followed by cascade of mergings. Shown in Fig.
11(a) is the periodic attractor forv=F7/F6=13/8. Succesive
expansion of this figure reveals additional features in the
bifurcation diagram: the period doublings and the band
mergings are clear in Figs. 11(b) and especially 11(c), where
the mergingM2

6 has already taken place[compare with Figs.
4(a) and 4(b)].

By choosing different intermediate values ofR, the entire
set of bifurcations and reverse bifurcations analogous to
those shown in Figs. 5–7 for the forced logistic map can be
located. The fraction of initialu values that lead to chaotic
dynamics can also be computed at each order of the rational
approximation. As in the case of the forced logistic map, the
fraction of the chaotic component decreases and eventually
vanishes for parameters corresponding to quasiperiodic torus
attractors(p1 and p2, for instance), while it asymptotes to a
nonzero fraction when the limiting attractor is fractal(at
p3, p4, andp5), as shown in Fig. 12. The distinction between
SNA’s and chaotic fractal attractors appears to be in the ex-

FIG. 9. The largest nontrivial Lyapunov exponent as a function
of the parameterR, for h=0.552 andA=0.3, for the forced Duffing
oscillator. The values ofR at pointspi , i =1, . . . ,5 are 0.455, 0.465,
0.468, 0.47, and 0.472.

FIG. 10. Projection of the two-frequency torus attractor of the
forced Duffing oscillator on thesx,ud plane at(a) p2 and(b) p4. The
first 105 iterates are discarded and the subsequent 50 000 points
have been plotted.

FIG. 11. (Color online) (a) Poincaré section of the attractor of
the dynamics for the forced Duffing oscillator with periodic forcing,
v=13/8 at the pointp1 sR=0.455d. The boxed region in(a) is
expanded in(b), and the boxed region in(b) is expanded in(c).
Since the asymptotic attractor(with irrational v) is a quasiperiodic
torus, the chaotic component of the attractor will diminish with
increasing order of rational approximation.
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tent of chaotic dynamics asymptotically. Atp5, when the
resulting attractor is chaotic, namely, with positive Lyapunov
exponent, the fraction ofu leading to chaotic motion ap-
proaches 1.

IV. SUMMARY

In the past few years a number of different scenarios for
the formation of SNA’s have been described[3]. The recog-
nition that there is necessarily an interplay between local
unstable dynamics and global stability requires the identifi-
cation of an unstable set that is embedded within the attractor
[17]. In the torus collision scenarios, such as those described
by Heagy and Hammel[6] or by Pikovsky and Feudel[18],
the interaction between stable and unstable tori that lead to
the SNA makes such an identification obvious. For other
routes, such as the blowout bifurcation[2,9], the available
results[12,13] are also in consonance with the same feature.
Kuznetsov[26] has also discussed the transformation of a
smooth invariant curve to a fractal attractor when there is a
saddle-node bifurcation in the presence of quasiperiodic
forcing. For a particular case, the renormalization group
analysis has been carried out, and a transition to SNA is

reported, resulting, however, from the collision of an attrac-
tor and a repeller at a fractal set of points[26]; the unstable
embedded set is easily identified.

The fractalization[5] and the intermittency routes[7] to
SNA present instances where the location of unstable set is
possible only through a detailed examination of a sequence
of periodic approximations to the quasiperiodic motion
[10,27]. For the intermittency route, a ring shaped unstable
set which is created via the quasiperiodic analogue of tangent
bifurcations can be identified[10]. Collision of a quasiperi-
odic torus with this unstable set gives rise to the chaotic
component responsible for the transition to SNA’s.

In this paper we have adapted the method of Kimet al.
[10] to address the problem of formation of SNA’s via frac-
talization. Application has been made to two representative
examples of quasiperiodically forced dynamical systems: the
logistic map, which has been a testing ground for initial stud-
ies of SNA’s[4,6,23], and the Duffing oscillator[21], which
has the added advantage of allowing experimental realization
[24]. Using successive rational approximations, it has been
possible to locate the unstable sets embedded in the attractor.
These take the form of disjoint lines, and are the analogs of
unstable periodic orbits appearing at period-doubling bifur-
cations. The cascade of bifurcations as this unstable set col-
lides with chaotic bands through band-merging crises is the
basic mechanism underlying fractalization. With the increase
of order of rational approximation the chaotic component
keeps decreasing and eventually vanishes at high order for
points which lie in the regular region of the parameter plane.
In the SNA region, for a finite measure ofu values, the
attractor remains chaotic even at high orders of the periodic
approximation. Though this chaotic set is not dense in the
wholeu interval, in the quasiperiodic limit, any finite chaotic
component will be distributed uniformly and ergodically, and
therefore the torus isfractalized.
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