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In the fractalization route for the formation of strange nonchaotic attra¢&xe\s) in quasiperiodically
driven nonlinear dynamical systems, a smooth torus gradually becomes a fractal as the forcing amplitude is
increased, while the Lyapunov exponent remains nonpositive. Using techniques introduced by &irto
identify unstable sets in SNA'S, we study torus fractalization in a sequence of approximations wherein the
quasiperiodic drive is replaced by periodic forcing of increasing period. This allows us to identify an unstable
set embedded in the attractor. In the periodically forced system, we show that there is a cascade of attractor
merging crises, and argue that the quasiperiodic analogue of such crises causes fractalization of tori to create
SNAS.
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I. INTRODUCTION the results of Stark16] and Sturman and Staifk 7], who
Chaotic attractors occurring in low-dimensional dissipa-Proved that a strange compact invariant set for quasiperiodi-

tive systems usually have an intricate geometric structure iy forced systems must support at least one invariant mea-
phase space: the capacity dimension of such an attractor oft''¢ With non-negative maximal Lyapunov exponent. Thus

ten assumes noninteger values. These are termed sftinge (1€ attractor contains locally unstable regions even though
In 1984, Grebogiet al. [2] constructed systems where the globally the dynamics is nonchaotic. Such locally unstable

dynamics was on fractal attractors but was ateachaotic ~ '€910ns can be characterized by studying the local Lyapunov
namely, the largest Lyapunov exponent was negafive exponentg18] which can be positive on an SNA depending

zero, at most The infinitesimal fine scale structure similar to cn)gr:'[nsltlr?al\vcgn?(lgtxl/%r(]js{thlysetrlljbslétflglnii gl;];c;;iltel_r)i/;ﬁunst)%gp&
strange sets combined with the lack of sensitivity to initial P 9 '

2 . . The fractalization route to SNA is one which is not asso-
condition are characteristic of strange nonchaotic attraCtoréiated with a specific bifurcation, unlike the other known
(SNA’s) [3]. X

h f lizati f dtod ibe the ph scenarios for the formation of such attract@8s Though it
The term fractalization was first used to describe the phejs ¢jear that there must be an unstable component to the

nomenology of the dynamics in a study of the quasiperiodiyytractor, it has not proved to be straightforward to identify
cally driven quadratic map by Kanekd] who observed that pis set.
with increasing forcing, the torus attractors of t(tevo- In this paper we examine the process of fractalization and
dimensional mapping became increasingly wrinkled, even-demonstrate that a cascade of attractor merging crises pre-
tually turning fractal at a critical point. There also was ancedes the creation of the fractal attractor. We follow the
interruption of the period-doubling cascade with an accelermethod used by Kim, Lim, and OftL0] to find unstable sets
ated transition to chaos. In a subsequent and more detailddr the fractalization process using a sequence of rational
study, Nishikawa and Kaneki®] showed that this process approximationgRA's) [20]. These unstable sets are created
leads to strange nonchaotic dynamics and termed this thidrough a cascade of period-doubling bifurcations, and colli-
fractalization route to SNA. sion of chaotic bands with them causes a cascade of interior
Although by now it is known that SNAs are typical in merging crises whereby the fractalization process takes
quasiperiodically forced systems—in that they can occur in #lace.
set of nonzero Lebesgue measure in the parameter space,We study both quasiperiodically driven mappings such as
intermediate between ordered and chaotic motion—all bifurthe forced logistic magin Sec. I), as well as continuous
cations and mechanisms leading to such dynamics have neystems such as the forced Duffing oscillatarSec. Il)). In
been completely characterized. Quasiperiodic extensions @fither case, it is necessary to analyze a sequence of periodi-
the bifurcations that commonly occur in nonlinear dynamicalcally forced systems that approximate the quasiperiodic sys-
systems underlie most of the known scenarios for the formatem. These two models have been extensively studied with
tion of SNASs [3]. It should be noted that while it is possible regard to the creation of SNA via fractalizati¢®,21]; we
to find fractal nonchaotic attractors in systems which are nothus believe the mechanism which we elucidate for the cre-
quasiperiodically forced, these are neither typical nor robusation of fractalized SNAs to be quite generally applicable.
to perturbations. Several routes leading to the formation ofhe paper concludes with a discussion and summary in
SNA’s are known[6-11], although there are few rigorous Sec. IV.
results availabl¢12—13 which establish both the fractal and
the nonchaotic properties for most such cases.
An essential feature of SNAs is the existence of an un- Commonly studied examples of forced dynamical systems
stable set embedded within the attractor. This follows fromhave been skew product maps

Il. THE FORCED LOGISTIC MAP
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Xn+1 = f(Xn, en) ’ (1)

b =w+86, mod 1, (2 0.15

where the forcing variabl@ evolves by rigid rotation. When ¢
w is irrational, the forcing is quasiperiodic, and for a variety o1k
of such systems, SNAs have been observed for a range o
parameter values in the vicinity of transition to chaos
[5,7,10,21. Unlike chaotic attractors, SNAs do not show 005
sensitivity to initial conditions, but there is sensitivity to the
phasevariable[18], namely, 6, and to the forcing amplitude
(or system parameterfs]. The origin of this phase sensitiv- 29
ity arises from the fact that even though the asymptotic
Lyapunov exponent is nonpositive, the local Lyapunov expo- %18 | — \1
nents can remain positive for long time intervals for typical :
orbits on SNAs[18].

Following Nishikawa and Kanek@5], we describe the
phenomenology of fractalization in the logistic map with ad- € -
ditive quasiperiodic forcing, namely, the case of 0.154 e

0.156

Xae1 = X O) = ax(1 = Xp) + € SN2, (3)

with w=(V5-1)/2. In Egs. (2) and (3) at zero forcing, 0.152 -
namely, e=0, the logistic map has a single attracting fixed
point for 1< a=<3. Thus, for example, at=3, the attractor | | | !
for the above system is a one torus which is a straight line in 01365 2,97 2.99 3.01 3.03 3.05
the phase spacdk, 6). With increasinge this one torus de- o
velops curvaturgwhile remaining a smooth Closed_cuyye FIG. 1. (Color onling (a) Phase diagram of the forced logistic
and eventually bec_qmes a SNAG{TO'1_553[5]' At higher map comp(uted for a ese(t )of 250250 g[]:)oints in thea-€ plar?e.
values ofe the stability along thex direction is lost and the Regular, chaotic, SNA, and escape regions are shown by white,
fractal nonchaotic attractor is replaced by a chaotic attractokack; coloredred, yellow, and green and light gray, respectively.
abovee~0.1573. Nishikawa and KaneKo] verify the ex-  gNAs are formed through the fractalizatiodiabeled by F),
istence of SNA for 0.1558 €< 0.1573 by showing that the intermittency (1), and torus collision(TC) routes. (b) A blowup
attractor has noninteger dimension and that the dynamics ha$ the boxed region of the phase diagram shown(an The
phase and parameter sensitivity. path chosen for study approaches the SNA region
Extending this calculation, we obtain the phase diagramapproximately normally and is indicated by the dashed line.
for the forced logistic map, shown in Fig(a. We have The coordinates of the various indicated points pge(2.956,
found it useful to characterize the dynamics through both th®.1528, p,=(2.97008,0.1536 p;=(2.972544,0.1537%4 p,

Lyapunov exponenk,, which is given by =(2.978704,0.15409 ps=(2.991904,0.15484 ps=(2.995952,
N 0.155507, p;=(3,0.1553, pg=(3.00264,0.15545 py=(3.0088,
1 af(x, 6, 0.1558, andp;p=(3.0125,0.1560
A, = lim _E In (x;, &) @) 8 P1o=( )il
N—WCNi:l (9X,

o ) _nism operategF), the narrow region corresponding to the
and the phase sensitivity exponent which can be obtaineghermittency scenaridl), and the region where SNAs are
from phase sensitivity functiofiy [18] created through torus collisiaifC). As has been extensively

X, ) discussed3,22, all these routes are dynamically distinct.

70 (5 We focus on a small portion of this parameter space

where all SNA's that occur are created through fractalization.
On a SNA, the functiol’y, grows with the length of the orbit Shown in Fig. 1b) is an expansion of the boxed region in
N, as a power, i.el'y~N?, wherevy is the phase sensitivity Fig. 1(a); this includes the parameter range studied by Nish-
exponent[18]. (Although we have not used it here, the pa-ikawa and Kaneko[5]. Note that the boundaries of the
rameter sensitivity exponer] has a similar behavigr. regular-SNA-chaotic regions in the phase plane are also
Regular motionthe white region in Fig. @] is character- likely to be fractal, although this has not been conclusively
ized by a negative Lyapunov exponent and zero phase semstablished at the present level of computational effort.
sitivity exponent. SNA(the colored regionsdynamics has
vy# 0 and negative\,, while chaotic motion(the black re-
gion) hasy+# 0,\,>0.

SNA's in the quasiperiodically forced logistic map appear The mechanism of fractalization can be understood more
through various route§22]. Indicated in Fig. {a) are the clearly if we approach the SNA region along a line which is
regions in parameter space where the fractalization mechaormal to the boundary, namely, by varying both parameters

I'\(a,e) = min( max
Xo,HO 0=n=<N

A. Fractalization path
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FIG. 2. The nontrivial Lyapunov exponent calculated along the  FIG. 3. The attractor of the dynamics along the fractalization
dotted line on the parameter plane shown in Figh) from 1 path at(a) ps, (b) ps and(c) pg.
points, discarding the initial T0as transients. The abscissa is the
distance of various points fromy, denoted byd,, . The regions of ~ System which approac_hes the originql quasiperiodic case in
torus, SNA and chaotic attract@€CA) are indicated on the horizon- the limit k—o. The driven system witho=w,=F,_;/Fy is
tal line at the bottom of the figure. termed the rational approximation of order

Depending on the initial phas®, the periodically forced
« and e. The path we follow here is indicated in Fig(hl ~ logistic map has either periodic or chaotic attractors. Due to
joining pointsp; - --pyo and the variation of Lyapunov expo- the periodicity it is sufficient to restric, to the interval
nent \, along this line is shown in Fig. 2(The other [0,1/F,]; the remainder of the attractor can be obtained by
Lyapunov exponent for the system is zero sincedldgnam-  iterating these values, -1 times. Thekth order approxima-
ics is a rotation. The attractor ap, is a smooth torus, and at tion to the attractor of the quasiperiodically forced system is
Pe, Near the SNA region, it becomes wrinkled as shown inthus the union of all attractors for<9¢,<1. The attractor
Fig. 3. The SNA obtained through fractalization route isfor the rational approximation of level 6 at the poing is
shown in Fig. 8c) corresponding tgg where the transition shown in Fig. 4a). Also shown, superimposed in gray, is the
to the fractalized SNA is complete. A, \, is positive; the  unstable set, which we obtained using the methods outlined
system is chaotic. in Kim, Lim, and Ott[10]. The attractor in Fig. &) is com-

In order to locate the unstable set embedded in the attragosed of 7(=Fg—1) evolved iterates of the attractor within
tor we use a standard method to approximate the irrationdhe window(shown by boxed region in the figyreThis ba-
drive frequencyw by an increasingly accurate series of ra- sic window is rescaled and displayed in Figby Since the
tional number$8,10,20,23. These are the convergents in the qualitative features are unchanged in each of the copies, we
continued fraction representation @f and for the inverse restrict attention to the attractor j@,1/F,] henceforth.
golden mean ratio that we use here, namely(y5-1)/2, For fixed @ ande, the initial phase? (henceforth we drop
they are ratios of successive Fibonacci numbers. Thus wéie subscript for simplicitycan be regarded as a bifurcation
approximatew by w,=F,_;/F, whereF,,;=F,+F,_; with  parametei{10], and hence the attractor of the dynamics can
Fo=0 andF;=1. be interpreted as a bifurcation diagram. Note that as a func-

_ o tion of 6, there is a period doubling bifurcation where a
B. Rational approximations stable orbit bifurcates into a stable period-two orbit, and one

When the irrationalv in Eq. (2) is replaced by its rational unstable orbit. At a subsequent valuefthere is a reverse

approximationwy, one necessarily has a periodically forced period-doubling bifurcation where the period-two orbits
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FIG. 5. (Color onling For the rational approximation of order 6,
FIG. 4. (Color onling For the rational approximation of order 6, namely, w=5/8, theattractor along with the ustable sg¢t light
namely, »=5/8, (a) the stable setmarked by dotsand the un-  pink) at(a) p; and(b) pz.
stable set(the light pink line calculated at the poinps on the
parameter plangsee Fig. 1b)]. (b) Enlargement of the dashed por- )\ W) will be greater than, equal to, or less than zero. Now
tion of (@), showing the stable and unstable géitht pink line). (c) following Kim, Kim, Hunt, and Ott[23], the orderk

The Lyapunov exponent corresponding to the stable and the un- (k) . .
stable setin black and light pink, respectivelyNote the change of yapunov exponenk, for the orbit can be defined 483]

scale ind in (b) and(c). 1
AW = f AX(h)de (6)

merge to form a period-one orbit. The structures apparent in 0

Fig. 4(b) are composed of a series of period-doubling bifur- _ o o

cations and reverse period-doubling bifurcations within thePy intégrating over(k)all initial 6. In the limit of k— s,

so-called “bubble” bifurcation plots. Essentially as a function@k— @, and clearlyh,” —\, [see Eq(4)].

of 6, one can have a period-doubling bifurcation, whibk- Shown in Fig. 4c) is \*(6) [see Fig. 4b)] for both the

cause of continuity at the window boundamnust be re- stable and the unstable sets. There is a smooth variation of

flected in a reverse bifurcation. These period-doubling bifurthe orderk Lyapunov exponent for the unstable periodic or-

cations accumulate in a transition to a chaotic attractor, andits for which the Lyapunov exponent is always positive, and

as is common, will result in a sequence of band mergingsa comparatively nonsmooth variation of the same foral-

This appears eventually as a chaotic band delimited on bothes when the attractor is chaotic.

sides by a period-doubling cascade, and the periodic part of The basic mechanism of the fractalization process can be

the stable set contains components of peridtF2 m  understood from the transitions occurring along the path

=0,1,2,.... from p; to p, in the parameter plane of Fig(k) at succes-
Whenw is approximated by it&th order rational approxi- sive orders of rational approximations. Introducing the nota-

mation, one can define a Lyapunov exponent for each initiation B}‘ to denote the bifurcation to period 2rbits in the

6 using Eq.(4), however, withw, in the dynamical equation rational approximation of ordek, we show in Fig. &a) the

(2). Depending on whether the initi# corresponds to the bifurcation BS, when there is a period-doubling bifurcation

chaotic, quasiperiodic or periodic ranges of the attractorgiving an unstable orbit of perioBg and a stable orbit of
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FIG. 6. (Color onling As in Fig. 5, at(a) pz and(b) p,.

) L . .5 FIG. 7. (Color onling The rational approximations to the qua-
period ZFe. This is followed by a reverse bifurcatioR;  gjneriodic attractors at various orders, at the ppinfThe stable and
whereby the orbit of periodrs becomes stable again. With ngtapje sets are denoted by black and light pink dots, respectively.
increasing parameters, at popy along the path, the bifur- ) order 7, w;=8/13. (b) Order 11,w,;=55/89. (c) Order 13,
cationsBy, By, andB; are shown in Fig. ) giving unstable , .—144/233. Note thaps lies outside the SNA region, and the

or_bits, in dif‘_ferent ranges of, of periodsFg, 2F¢, and fFe_- chaotic component vanishes at order 13, leaving, as a remnant of
With changing parameter values a cascade of such bifurcare piturcations. the small bubble ).

tions follow, giving unstable and stable orbits of all periods

2"F, n=1,2,3,..., insuccessively smaller windows i&, C. A o
and eventually giving rise to a chaotic component as is - ASymploties
clearly visible in Fig. 6. The sequences of bifurcations and reverse bifurcations de-

At p; [see Fig. Ga}] the dynamips is chaqtic for arange of pend on both the parameter valyeamely,a ande) as well
¢, flanked on both sides by a period-doubling cascade. Thergs the order of the rational approximation. Thus, for lkaw

are two such chaotic bands with an unstable orbit of periodar into the regular region, one typically observes the trun-
Fe between. As the point, is approached, these two chaotic cated sequences

attractors collide simultaneously with the unstable pefgd

orbit. An attractor merging crises takes place as shown in BX B, ... B R 1, ... RERE (7)
Fig. 6b). We term thisM;. Each chaotic attractor which . _ . e .

merges through interior or merging crises was born through ¥/ith finite m. When the transition is made to chaotic dynam-
similar process, as can be seen in Figg)@vhere the four €S within the rational approximation, then the sequence of
chaotic windows just touch the unstable peridé; rbits; k gk k _ pk k k ok

this is the mergingWS. In the inset of Fig. @) the upper BBz - Be = May o My R Ry ®
chaotic band is magnified, showing the earlier band-mergindor j =1 can obtain. With increasinky if the parameters are
crises where chaotic attractors have already collided within the regular region, then the bifurcation sequence of(Eqg.
period 2'F¢ unstable orbits. Three such bubbles at variouseventually obtains, whereas if the parameters correspond to
stages of development are visible in Figby With further  the SNA or chaotic regime, then the seque(®ds realized.
increase of the parameter values the number of such cascadesln Fig. 7 at the poinpg on the parameter plarge/hich lies
increases. just outside the SNA regigrthe rational approximation to
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1 the total positive Lyapunov exponent corresponding to the

chaotic component balances the total negative Lyapunov ex-
ponent coming from the regular component. When, as at the
point markedp,q in Fig. 1(b), the chaotic component is
larger than the regular, the global Lyapunov exponent be-
comes positive and results in a fractal chaotic attractor. As
can be seen in Fig. 8, fop, the fraction of the chaotic
component approaches unity with increasing order of the ra-
tional approximation.

0.1

0.01

Fraction of support of the chaotic set

0.001 !
¥ i lI({)Alevel 12 14 IIl. THE FORCED DUFFING OSCILLATOR

FIG. 8. The support of the chaotic part of the attractor with the ~ The scenario that has been described in the previous sec-
increasing order of rational approximation, calculated for 5000 ini-tion appears to apply quite generally. Here we study the frac-
tial 6. When this asymptotically goes to zero, a nonstrange nonchdalization route to SNA in a continuous system, the quasi-
otic attractor results. For strange attractors, there is always a rgperiodically forced Duffing oscillator. A variant of this sys-
sidual chaotic set at any order of rational approximation. At thetem can be realized in experiment as the magnetoelastic rib-
point p,o, the attractor of the quasiperiodically forced system isbon; indeed this was one of the first systems where SNA's
chaotic. were observed24]. Such continuous-time-dynamical sys-

tems can also be reduced to mappings via the Poincaré sec-
the attractor at various orders is shown. The chaotic compajon technique.
nent is seen to keep decreasing with the increase of order, The equation of motion for the quasiperiodically forced
and[see Fig. 7c)] vanishes fok=13. Since the full attractor pyffing oscillator[21,24,25 is
atk=13 is composed of 377 evolved copies of this attractor,
we infer that the torus is indeed “wrinkled,” but in the %+ hx-[1+A(R cost+coswt)[x+x3=0, (9
— oo limit does not become a fractal. Note that for the ratio-
nal approximation of order 13 the sequence of bifurcation
BI*RI3is visible in a small range of, corresponding to the
scenario(7).

This scenario can be quantitatively characterized by me
suring the chaotic component of the dynamics—the width o
the intervals in&tha‘g give a positi_ve LyapunO\_/ expone{BEe X=y, (10)

Eq. (6)]—as a function of the rational approximation ordter

This will eventually go to zero for regulgtorus dynamics, = _3_

whereas for SNA or chaotic motion, this quantity will as- y=[1+ARcos¢+cos)x—x"~hy, (1)
ymptote to a constant. This quantity, at different points along :

the fractalization path, is shown in Fig. 8. A, which is $=1, (12)
outside the SNA region, the fraction of chaotic component

var)ishgs.for the order 11 rational approximati.on, whil@at 0= (13)
which is just at the threshold of the SNA region, a measur-

able fraction of initial¢ lead to chaotic dynamics even for in a four-dimensional phase space. Earlier studies of the
the order 15 rational approximation. In the SNA region, atforced Duffing oscillator{21,23 have established that with
point pg and beyond, the measure of the surviving chaoticquasiperiodic forcing SNA's are created through several dif-
component remains nonzero for all orders of the rational apferent mechanisms, including fractalization. A detailed study
proximation. In our numerical simulations we have foundOf these routes has been presented earlier in [R&f.where
that the support of the chaotic component appears to haveRfiase diagrams describing the different dynamical behavior
nonmonotonic variation with respect to the increase of ordefs a function of the different parameters has also been given.
of rational approximation, but this is likely to arise from the ~ We restrict attention to the portion of the parameter region
fact that the boundaries of various dynamical regions arévhere the fractalization transition to SNA is known to occur
themselves probably fractal. [21], namely, for w=(y5+1)/2, h=0.0552, andA=0.3.

Whether the attractor is nonchaotic or chaotic depends oRquation(9) is numerically integrated with a fourth-order
the surviving fraction of the chaotic component. When as-Runge-Kutta algorithm with step size 0.01 in natural units.
ymptotically there is no surviving chaotic component, theThe Lyapunov exponents are computed as a function of the
attractor is clearly nonchaotic and will be a wrinkled torus. parameteR.

At the transition to SNA, the fraction of chaotic motion that ~ Shown in Fig. 9 is the largest nontrivial Lyapunov expo-
survives at each order of the rational approximation isnent as a function dR. At the pointsp; andp, the dynamics
enough to contribute some instability to the motion and conis regular; the attractor g, is shown in Fig. 10a) projected
fer fractality to the attractor without making the Lyapunov onto the(x, §) plane. Neaps, there is a transition from regu-
exponent positive. At the transition point from SNA to chaos,lar motion to SNA via the fractalization routg, lies in the

where the frequency is taken to be an irrational numbér,

Is the damping constant, adandR determine the coupling
and amplitude of the quasiperiodic forcing term. This can be
rewritten as a set of autonomous coupled first-order differen-
ial equations
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FIG. 9. The largest nontrivial Lyapunov exponent as a function
of the parameteR, for h=0.552 andA=0.3, for the forced Duffing
oscillator. The values oR at pointsp;,i=1,...,5 are 0.455, 0.465,
0.468, 0.47, and 0.472.

SNA region: the corresponding attractor is shown in Fig.
10(b). At ps the largest Lyapunov exponent is positive and
the dynamics is chaotic.

The rational approximation technique to investigate the

transition from regular motion to SNA involves replacement
of the irrational driving frequencyw by w,=F,/F,_; at order

k, where theF,'s are the Fibonacci numbers. As in the case
of the mapping studied in the previous section, the initial
value of the phase variab® becomes a bifurcation param-
eter, and depending on the initial phase the attractor of th
periodically driven Duffing oscillator can be regular or cha-
otic.

1

05

FIG. 10. Projection of the two-frequency torus attractor of the
forced Duffing oscillator on théx, 6) plane at(@) p, and(b) ps. The
first 1CP iterates are discarded and the subsequent 50 000 poin
have been plotted.
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0.54

0.51

0.48

0.24

FIG. 11. (Color onling (a) Poincaré section of the attractor of
the dynamics for the forced Duffing oscillator with periodic forcing,
®w=13/8 at the pointp; (R=0.455. The boxed region ina) is
expanded in(b), and the boxed region ifb) is expanded inc).
8ince the asymptotic attractawith irrational w) is a quasiperiodic
torus, the chaotic component of the attractor will diminish with
increasing order of rational approximation.

The analysis here parallels that presented in Sec. Il since
the mechanism of fractalization in the forced Duffing system
is very similar to that in the forced logistic map. At a given
level of rational approximation, a cascade of period dou-
blings are followed by cascade of mergings. Shown in Fig.
11(a) is the periodic attractor foo=F,/Fg=13/8. Succesive
expansion of this figure reveals additional features in the
bifurcation diagram: the period doublings and the band
mergings are clear in Figs. @) and especially 1t), where
the mergingMg has already taken plageompare with Figs.
4(a) and 4b)].

By choosing different intermediate valuesRfthe entire
set of bifurcations and reverse bifurcations analogous to
those shown in Figs. 5-7 for the forced logistic map can be
located. The fraction of initiab values that lead to chaotic
dynamics can also be computed at each order of the rational
approximation. As in the case of the forced logistic map, the
fraction of the chaotic component decreases and eventually
vanishes for parameters corresponding to quasiperiodic torus
attractors(p; and p,, for instancg, while it asymptotes to a
nonzero fraction when the limiting attractor is fraciat
B3, P4, andps), as shown in Fig. 12. The distinction between
SNA's and chaotic fractal attractors appears to be in the ex-
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reported, resulting, however, from the collision of an attrac-
tor and a repeller at a fractal set of poifig6]; the unstable
embedded set is easily identified.

The fractalization[5] and the intermittency routd§’] to
SNA present instances where the location of unstable set is

0.1

Fraction of support of the chaotic set

001 possible only through a detailed examination of a sequence
3 of periodic approximations to the quasiperiodic motion
0_001:_ [10,27. For the intermittency route, a ring shaped unstable
set which is created via the quasiperiodic analogue of tangent
C bifurcations can be identifiefl0]. Collision of a quasiperi-
00001 : 1 : m m L ., odic torus with this unstable set gives rise to the chaotic

RA level component responsible for the transition to SNA's.
In this paper we have adapted the method of Katral.

FIG. 12. Variation of the support of the chaotic part of the at- [10] to address the problem of formation of SNA's via frac-
tractor With. the ingreasing orQer of rational approximation for thetalization. Application has been made to two representative
forced Duffing oscillator at pointpy, ... ps; see Fig. 9p, andp,  gyamples of quasiperiodically forced dynamical systems: the
are in the torus regime; andp, are in the fractalized SNAregion, | istic map, which has been a testing ground for initial stud-
and atps there is a chaotic attractor. ies of SNAs[4,6,23, and the Duffing oscillatof21], which

has the added advantage of allowing experimental realization
tent of chaotic dynamics asymptotically. A%, when the [24]. Using successive rational approximations, it has been
resulting attractor is chaotic, namely, with positive Lyapunovpossible to locate the unstable sets embedded in the attractor.
exponent, the fraction of leading to chaotic motion ap- These take the form of disjoint lines, and are the analogs of
proaches 1. unstable periodic orbits appearing at period-doubling bifur-
cations. The cascade of bifurcations as this unstable set col-
IV. SUMMARY lides with chaotic bands through band-merging crises is the

. . ic mechanism underlying fractalization. With the incr
In the past few years a number of different scenarios forbaSC echanism underlying fractalizatio th the Increase

: . : of order of rational approximation the chaotic component
the_ formation of S.NAS have been de_:scrlb[éi]. The recog- eeps decreasing and eventually vanishes at high order for
nition that there is necessarily an interplay between loc

. - 4 . —-points which lie in the regular region of the parameter plane.
uns_table dynamics and globe_xl stability requires the |dent|f|—|n the SNA region, for a finite measure af values, the
cation of an unstable set that is embedded within the attractoi

o . X r r remains chaotic even at high orders of th riodi
[17]. In the torus collision scenarios, such as those describe {tractor remains chaotic even at high orders of the periodic

) pproximation. Though this chaotic set is not dense in the
by I—_|eagy a_nd Hammgb] or by Pikovsky and Fe_udefll8], whole ¢ interval, in the quasiperiodic limit, any finite chaotic
the interaction between stable and unstable tori that lead t

the SNA makes such an identification obvious. For Othelﬁ]ogpgft())rr]g?Lgltl(ljfjsdiggétt);ltiggdunlformIy and ergodically, and
routes, such as the blowout bifurcati¢,9], the available

results[12,13 are also in consonance with the same feature.
Kuznetsov[26] has also discussed the transformation of a
smooth invariant curve to a fractal attractor when there is a
saddle-node bifurcation in the presence of quasiperiodic This work was supported by a grant from the Department
forcing. For a particular case, the renormalization groupof Science and Technology. S.D. and R.R. would like to
analysis has been carried out, and a transition to SNA ithank Professor S.-Y. Kim for helpful correspondence.
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